Relaxing the optimality conditions of box QP
نویسندگان
چکیده
We present semidefinite relaxations of nonconvex, box-constrained quadratic programming, which incorporate the firstand second-order necessary optimality conditions, and establish theoretical relationships between the new relaxations and a basic semidefinite relaxation due to Shor. We compare these relaxations in the context of branch-and-bound to determine a global optimal solution, where it is shown empirically that the new relaxations are significantly stronger than Shor’s. An effective branching strategy is also developed.
منابع مشابه
A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملA Global Optimality Criterion for Nonconvex Quadratic Programming over a Simplex
In this paper we propose a global optimality criterion for globally minimizing a quadratic form over the standard simplex which in addition provides a sharp lower bound for the optimal value The approach is based on the solution of a semide nite program SDP and a convex quadratic program QP Since there exist fast polynomial time algorithms for solving SDP s and QP s the computational time for c...
متن کاملOptimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 48 شماره
صفحات -
تاریخ انتشار 2011